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Certifiably Robust Neural ODE
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Abstract—Neural Ordinary Differential Equations (ODEs)
have gained traction in many applications. While recent
studies have focused on empirically increasing the robust-
ness of neural ODEs against natural or adversarial attacks,
certified robustness is still lacking. In this letter, we pro-
pose a framework for training a neural ODE using barrier
functions and demonstrate improved robustness for clas-
sification problems. We further provide the first general-
ization guarantee of robustness against adversarial attacks
using a wait-and-judge scenario approach.

Index Terms—Neural networks, machine learning, data-
driven control.

I. INTRODUCTION

NEURAL ordinary differential equations (NODEs) approx-
imate nonlinear mappings by modeling the dynamics

of hidden states by an ODE solver [6]. By extending dis-
crete layerwise architectures to continuous-time dynamical
systems, NODEs open up a wealth of applications, enjoy
many desirable properties, such as parametric efficiency, con-
stant memory requirements, and invertibility [6], [18], [21],
and allow researchers to tap into the vast literature on control
theory to achieve certain output requirements [18], [21].

This letter aims to enhance the robustness of NODEs.
Robustness is the ability of a model to maintain integrity
in the face of input perturbations, either natural or adversar-
ial. The vulnerability (lack of robustness) of deep learning to
adversarial attacks is well-studied [7], [17], [19], [22]. Recent
study [12] indicates that, unlike conventional deep learning,
NODEs have a certain level of inherent robustness due to the
non-intersecting property of integral curves (see also [13] for
another interesting view). Existing work to improve robustness
can be classified (with overlaps) below.

1) Regularization methods inject random noise into each
layer [16], randomly sample the end time of the ODE
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Fig. 1. Comparison between vanilla NODE and B-NODE (ours). The
quiver plot shows the flows of NODEs, the propagation of the training
data (solid lines), and how perturbed inputs (solid dots) are mapped to
perturbed outputs (crosses) for both classes (red and blue). Grey line:
decision boundary.

during training [16], or introduce additional penalty
terms on weights [9];

2) Control-theoretic approaches design the training loss
to promote certain properties of the dynamical system,
such as steady-state constraint [12], contraction [21],
reachability [11], and Lyapunov stability [15], [18].

While regularization methods are inspired by deep learning
experiences (dropout, stochastic depth, and random smooth-
ing in the case of [9], [16]), control-theoretic approaches
directly promote certain aspects of the underlying dynamical
systems—this is also the approach we take in this letter.

Our key insight is that not all input-perturbation-induced
output changes are adverse or need to be penalized; robustness
depends only on those points near the boundary that are most
susceptible to adversarial perturbations along certain directions
(see Fig. 1 for an illustration, detailed in Section V-A). Hence,
instead of aiming to make the output for each data point to be a
steady-state [12] or within a neighborhood of some Lyapunov-
stable equilibrium [15], [18], we focus only on vulnerable
points and penalize output changes along adverse directions.
Additionally, we realize that for classification problems with
a complex underlying mapping, outputs are expected to be
different despite a small difference in inputs, which is not the
case for robust/contractive systems [21]. To bring these insights
to bear, we develop a framework that learns NODE parameters
together with a robustness certificate based on control-barrier
functions [1]. Our key contributions include.

• Development of a framework for training robust NODEs
using learning-based barrier functions;
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• Establishment of the first generalization guarantee of
robustness using a wait-and-judge approach;

• Demonstration of robustness against natural and adver-
sarial perturbations for a range of benchmarks.

Contextualization of contributions. In comparison to studies
that enhance the empirical robustness of NODEs [9], [12], [13],
[15], [16], [18], [21], our study provides a rigorous analysis
of the robustness guarantee. Unlike recent works on certi-
fied robustness that only analyze a given point [11], [14],
we extend the certified robustness analysis to an unseen
in-distribution point (Theorem 2). This difference can be
interpreted as an extension from training performance to gen-
eralization performance, as defined in Def. 1. In our study, we
pursue an approach based on scenario optimization [3], [4],
while extending existing works in scenario optimization to the
case of agnostic PAC (another contemporary work that also
achieves this [5]). We further validate the tightness of our
theoretical bounds and demonstrate nontrivial lower bounds.

Next, we discuss preliminaries in Section II. Section III
presents the robustness certificate based on barrier functions
and the proposed robust training procedure. Theoretical analysis
of robustness is performed in Section IV. Numerical results
are discussed in Section V and the conclusion is drawn in
Section VI. For the proof and additional experiments, please
refer to [20].

Notations: We represent [n] = {1, . . . , n}, [k, n] =
{k, . . . , n}, [a]+ = max(0, a), and 1(·) as the indicator function
(outputs 1 if the argument is true and 0 otherwise).

II. PRELIMINARIES

A. Neural ODEs

As a nonlinear mapping, a NODE specifies the relation
between input z(0) = φ(x) and output y = ψ(z(T), x) by the
following differential equation:

ż(t) = fθ (z(t), t), (1)

where x is the input data, z(t) is the ODE state (hidden layer
values) at time t, y is the output, and fθ is a nonlinear function
parameterized by θ . The initial condition z(0) is derived from
the input by a feature mapping φ (i.e., input layer) and the
output y is obtained from z(T) through a function ψ (i.e.,
output layer). We slightly overload the notation z(T, x) to make
explicit the dependence of z(T) on the initial state x. The input
layer can be learned from scratch or fine-tuned [12], [15]. The
output layer is typically a simple function, such as softmax for
classification. We use a time-invariant NODE, as is common
practice (e.g., [12]), denoted as fθ (z(t)) throughout.

Classification: For classification problems, the final state
of NODE undergoes an affine transformation to produce an
embedding Wz(T) ∈ R

K , where W ∈ R
K×d is the parameters

to be learned. The embedding can be passed through either
an argmax function arg maxk [Wz(T)]k or a softmax function
to obtain a probability vector. The output is denoted as y =
ψ(z(T), x) = gW(x, fθ ). Unless otherwise specified, we denote
θ to also include the parameter W and omit the dependency
of gW on W for notational simplicity.

Forward/backward process: Forward pass can be performed
using standard ODE solvers (such as Euler’s method or

Runge–Kutta method) to obtain the final state z(T). For train-
ing, we need to calculate the derivative of the loss function
with respect to NODE parameters, which can be obtained by
either auto-differentiation or the adjoint sensitivity method [6].

B. Attack Model and Adversarial Training

Attack model: In this letter, we consider evasion attacks,
where the attacks occur at the time of inference after the
model has already been trained [10].

We consider a range of capabilities, from a random attack
scenario, where noise of certain variance is added to the input
data, to a whitebox attack, where the attacker can have full
access to model parameters to reduce model performance.

Adversarial training: Suppose we have a training datasetD =
{(xi, yi)}i∈[n]. Standard training solves the following empirical
risk minimization (ERM) problem:

min
θ

∑

(x,y)∈D
�(g(x, fθ ), y), (2)

where � is the loss function, such as the cross-entropy loss. A
family of adversarial training techniques can be seen as solving
the following min-max optimization:

min
θ

⎧
⎨

⎩
∑

(x,y)∈D
max
δ∈� �(g(x + δ, fθ ), y)

⎫
⎬

⎭, (3)

where δ is the perturbation,� is the set of feasible perturbations
(e.g., vectors with bounded �1, �2, or �∞ norm). Typical algo-
rithms to solve inner maximization include projected gradient
descent (PGD) [17] and fast sign gradient method (FSGM) [10].
During each iteration of the outer minimization, the inner
maximization is approximated by either PGD or FSGM. Let
Dθ = {(x′

i, yi)}i∈[n] denote the adversarial data, where x′
i is

obtained by some attack algorithm (e.g., PGD, FSGM) on the
data (x, y). Then, the adversarial training procedure can be seen
as performing standard training on augmented datasets:

min
θ

∑

(x,y)∈D∪Dθ

�(g(x, fθ ), y), (4)

where Dθ is a set that depends on both the current model θ
and the attack algorithm. In our experiments, we also consider
generating Dθ by simply adding Gaussian noises to each input
to emulate natural perturbations, in which case the dependence
on θ is no longer needed.

III. METHODOLOGY

A. Robustness Certificate

Robust set: Suppose that the input x takes values in a compact
metric space X and the output y ∈ Y = {1, . . . ,K}. For a
given x and a fixed NODE with parameter θ , let �θ(x) =
{z(T) : z(0) = x + δ, ż(t) = fθ (z(t)), t ∈ [0,T], δ ∈ �} denote
the output perturbation set, i.e., the set of final states of NODE
when the initial state is perturbed by any δ ∈ �. Let Cy =
{z : [Wz]y ≥ [Wz]y′,∀y′ ∈ Y} represent the set of embeddings
that lead to the selection of class y under the argmax rule applied
after an affine transformation. Then, for any data sample (x, y),
the robust set Sθ (x, y) is given by

Sθ (x, y) := �θ(x) ∩ Cy, (5)
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which represents the set of perturbed final states that still lead
to a correct result. Consider the following two cases:

1) �θ(x) \ Sθ (x, y) 
= ∅ implies that there is a δ ∈ � that
falsifies the output, i.e., arg maxk [Wz(T)]k 
= y;

2) �θ(x) = Sθ (x, y) implies that NODE θ can provide a
correct decision under any perturbation.

We also note that Sθ (x, y) ⊆ Cy always holds.
Robustness certificate: Recall that an extended class K∞

function is a function α : R → R that is strictly increasing
and with α(0) = 0. The following result provides a certificate
for a given point (x, y) against arbitrary perturbation δ ∈ �.

Theorem 1 (Robustness Certificate): Suppose there exists
a continuous and almost everywhere differentiable function
hy : Cy → R such that (1) Sθ (x, y) ⊆ Hy ⊆ Cy, where Hy =
{z : hy(z) ≥ 0}, and (2) there exists an extended class K∞
function α such that for NODE (1):

ḣy(z(t)) ≥ −α(hy(z(t))) (6)

for all z(t) ∈ �θ(x) and t ∈ [0,T], then, for any δ ∈ �, there
exists a finite T ′ > 0 such that z(t, x + δ) ∈ Cy for all t ≥ T ′.
We call the function hy a robustness certificate (for point (x, y)
under NODE θ).

Remark 1: A natural candidate for hy is the family of func-
tions parameterized by W: hy(z) = [Wz]y − maxk 
=y [Wz]k,
which is continuous, differentiable everywhere, and satisfies
condition (1) because in this case Hy = Cy.

Remark 2: The robustness certificate defined above enforces
the invariance of Hy that includes the robust set Sθ (x, y) but
excludes the remaining perturbation set �θ(x) \ Sθ (x, y) that
corresponds to a corrupted result. In addition, it also ensures
that for perturbed final states in �θ(x) \ Sθ (x, y), the NODE
will be able to recover to a correct decision asymptotically,
that is, Sθ (x, y) ⊆ Cy if we run the underlying NODE long
enough (with T large enough).

The following corollary extends the certificate to a dataset.
Corollary 1: Given a dataset D = {(xi, yi)}i∈[n], suppose

there exists a continuous and almost everywhere differentiable
function hy : Cy → R such that satisfies conditions (1) and
(2) in Theorem 1. Then, for any (x, y) ∈ D and any δ ∈ �, there
exists a finite T ′ > 0 such that z(t, x + δ) ∈ Cy for all t ≥ T ′.

Remark 3: While barrier functions have been widely used
in control systems to establish safety, avoidance, or eventuality
properties [1], this letter is the first to adapt the method for
a classification problem with new notions of robust set and
robustness certificate.

B. Training With Robustness Certificate

To integrate the robustness certificate into training, ideally,
we can solve the following optimization:

min
θ,{hy}y∈Y

∑

(x,y)∈D
�(g(x, fθ ), y), (7a)

s.t. hy ∈ C1(Rd,R), ∀y ∈ Y (7b)

{z : hy(z) ≥ 0} ⊆ Cy, ∀y ∈ Y (7c)

Sθ (x, y) ⊆ {z : hy(z) ≥ 0}, ∀(x, y) ∈ D (7d)

ḣy(z(t)) ≥ −α(hy(z(t))),

∀z(t) ∈ �θ(x), (x, y) ∈ D (7e)

where objective (7a) can be the usual cross-entropy loss, (7b)
enforces that hy is continuous and almost everywhere differ-
entiable, (7c), (7d) and (7e) correspond to conditions (1) and
(2) in Corollary 1, respectively. For comparison, TisODE [12]
and SODEF [15] impose stability or steady-state constraints
on NODE dynamics fθ , whereas robustness is enforced by the
existence of a certificate function.

Learning-based certificate: Since optimization over func-
tions {hy}y∈Y can be intractable, we specify a parametric form
of hy(z) = [Wz]y − maxk 
=y [Wz]k for a given W shared among
{hy}y∈Y . This immediately satisfies constraints (7b)–(7d) (see
Remark 1). We also tie this parameter to the parameter of gW
because their goals are aligned; in this case, the certificate coin-
cides with the last layer transformation. Note that constraint (7e)
is specified over a set. While sum-of-squares provides a prin-
cipled approach [1], computation becomes quickly intractable
for higher-dimensional systems. Along the line of learning-
based certificates [8], we propose two complementary ways to
approximate this constraint with data.

• Random samples: For each data point (x, y), we randomly
sample a set of perturbations; for each perturbation δ, we
forward propagate NODE to obtain z(T). The set of such
z(T)’s is collected by �̂θ (x), which is used to replace
�θ(x) in (7e).

• Adversarial examples: Similar to the above, except that
for each data (x, y), we apply an attack algorithm to find
a set of δ’s. The corresponding z(T)’s together with the
original z(T) without input perturbation are collected by
�̂θ (x) used to replace �θ(x) in (7e).

In general, we can expect that a sufficient number of ran-
dom samples can bring �̂θ (x) close to �θ(x); in the case
of adversarial samples, the constraint is more biased towards
attack cases, where the robustness certificate is most likely
to be violated. We use Dθ (x, y) and Dθ = ∪(x,y)∈DDθ (x, y)
to represent perturbed input sets for each data (x, y) and the
entire dataset, respectively, which can be a mixture of ran-
dom samples and adversarial examples. Therefore, instead of
directly optimizing (7), in our implementation, we optimize
the following empirical Lagrangian:

min
θ

L(θ) := L0(θ)+ λ1L1(θ)+ λ2L2(θ)+ λ3L3(θ), (8)

where L0(θ) = ∑
(x,y)∈D �(g(x, fθ ), y) is the usual training

loss, L1(θ) = ∑
(x,y)∈Dθ

[−hy(z(T, x)) + ε1]+ is the loss that
penalizes mistakes due to random/adversarial perturbations,
L2(θ) = ∑

(x,y)∈D∪Dθ
[−ḣy(z(T, x))−hy(z(T, x))+ε2]+ is the

regularization term for constraint (7e) with the simple choice
of α(a) = a, L3(θ) = ∑

(x,y)∈D∪Dθ
[|ḣy(z(T, x))| − ε3]+ for

some constant {εi > 0}i∈[3], and {λi ≥ 0}i∈[3] are regularization
coefficients (can be seen as dual variables for the Lagrangian
relaxation of (7)).

Remark 4 (Reverse-time Robustness): The term L3(θ) is not
needed if we are able to enforce constraint (7e) exactly (i.e.,
over the entire set �θ(x)). However, it is necessary in the case
of sample-based constraints. Intuitively, consider an input (x, y)
that leads to a final state z(T, x) lies within but close to the
boundary of {z : hy(z) ≥ 0}. If the rate |ḣ(z(T, x))| is large and
if the constraint (7e) is not enforced on all points along the
trajectory z(t) ∈ �θ(x), then it is plausible that a small time
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shift t′ = t − δt can drive the state out of Sθ (x, y). Such an
attack, called revserse-time attack, has not been discussed in
the literature due to the specific nature of NODE; nevertheless,
it can be performed easily because perturbation on the input
δ = z(0, x)−z(−δt, x) can be small if δt is small (here, z(−δt, x)
is the state after running NODE for δt in reverse time).

IV. THEORETICAL ANALYSIS

We present a theoretical framework to analyze to what extent
the level of robustness of a trained NODE generalizes to unseen
samples from the same distribution.

A. Certified Robustness Bound

Let ξi := (xi, yi) be a random sample drawn from probability
space (
,F ,P), which is endowed with a σ -algebra F and a
probability measure P. A dataset Dn := {ξi}i∈[n] ∈ 
n consists
of n observations drawn independently from 
 according to P.
Formally, solving (8) for a given dataset can be regarded as
a numerical procedure Ar : 
r → �, indexed by the sample
size r ∈ [n], which returns a NODE parameter θ along with
a robustness certificate. We use A(S) to denote Ar(S) for any
subset S ⊆ Dn, where we omit the subscript r = |S|, i.e., the
cardinality of S. For every data sample ξ = (x, y), define

�ξ :=
{
θ ∈ � : hy(z(T, x)) ≥ 0, |ḣy(z(t))| ≤ ε,

ḣy(z(t)) ≥ −α(hy(z(t))),∀z(t) ∈ �θ(x)
}

as the set of NODE parameters that renders the data ξ correctly
classified (due to hy(z(T, x)) ≥ 0) and certifiably robust to any
perturbation in � (due to Theorem 1). Similarly, we define an
empirical estimate of the set �̂ξ by replacing the conditions
above with hy(z(T, x)) ≥ ε1, ḣy(z(t)) ≥ −α(hy(z(t)))+ ε2, and
|ḣy(z(t))| ≤ ε3 for all z(t) ∈ �̂θ (x), which coincide with the
loss terms in {Li(θ)}i∈[3] for (x, y).

The goal of the analysis is to study how the robustness of a
NODE θn = A(Dn) returned by A on a dataset Dn generalizes
to a yet unseen data ξ ∈ 
.

Definition 1: The robustness probability (RP) of a given
parameter θ ∈ � is defined as V(θ) := P(ξ ∈ 
:θ ∈ �ξ).

The robustness rate (RR) on an evaluation subset S ⊆ Dn is
V̂(θ; S) := 1

n

∑
ξ∈Dn

1(θ ∈ �̂ξ )− 1
n

∑
ξ∈Dn\S 1(θ 
∈ �̂ξ ).

Note that RP V(θ) should be interpreted as a lower bound
on the true robustness probability of a given NODE θ , since
θ ∈ �ξ implies that the data ξ is certifiably robust to all δ ∈ �
but a data ξ ′ may be robust even if θ /∈ �ξ ′ (i.e., the condition
θ ∈ �ξ is a sufficient but not necessary condition for certified
robustness). We use V̂(θ) for V̂(θ;Dn) if the evaluation dataset
is Dn for notational simplicity.

Assumption 1: For any data ξ ∈ Dn in the training set, we
have that �̂ξ ⊆ �ξ .

Assumption 2: The algorithm A : 
n → � to solve (8)
yields a unique output. Suppose the output is θn = A(Dn). For
any subset S ⊆ Dn where the membership ξ ∈ S implies that
θn ∈ �̂ξ , we have that θn = A(Dn \ S).

Assumption 1 ensures that a point that is robust against
adversarial examples is also robust against all perturbations
in �. This can be achieved by choosing sufficiently large

margins εi[i ∈ [3] under the condition that the NODE dynam-
ics f θ is bounded. To satisfy the uniqueness requirement in
Assumption 2, a simple tie-break rule can be used to select the
solution with minimum norm in cases where multiple solutions
exist. The second requirement is similar to the non-support data
concept in support vector machines, indicating that removing
non-support data should not alter the solution.

Main result: In the following, we focus the analysis on
proving a PAC (probably approximately correct)-type of result:
V(θn) ≥ V̂(θn) − κ for some parameter κ ∈ (0, 1) with a
probability at least 1 − β. A probability bound of 1 − β

is necessary as θn = A(Dn) is a random variable defined
over 
n. Before stating our main result, consider a function
In : 
n → {1, . . . , n} that returns S = In(Dn) for a given
dataset Dn, where S ⊆ {1, . . . , n} is a subset of indices such
that Dn(S), namely, the subset of data indexed by S , has
the property that A(Dn) = A(Dn(S))) and V̂(A(Dn);Dn) =
V̂(A(Dn(S));Dn(S)).1

Theorem 2: For the given A that solves (8), it holds that

P
n
(

V(θn) ≥ V̂(θn)− κ(rn)
)

≥ 1 − β, (9)

where rn = |In(Dn)| and θn = A(Dn). Here,
κ(r) : {0, . . . , n} → [0, 1] is any function such that κ(0) = 1
and

n∑

r=1

(
n

r

)
(1 − κ(r))n−r ≤ β.

Remark 5: To compute the bound, a simple choice is to split
β evenly among the n terms in the summation:

κ(r) =
⎧
⎨

⎩

1 if r = n[
1 −

(
β

n(n
r)

)1/(n−r)
]

+
o.w., (10)

where
(n

r

)
is the n-choose-r binomial coefficient.

Remark 6: The practical optimization equation (8) is a com-
putationally tractable relaxation of the ideal optimization
equation (7) from constrained optimization to unconstrained
optimization with empirical data. Theorem 2 provides a bound
for the solution obtained from (8), evaluated against the con-
straints from (7). If a point ξ satisfies the constraints from (7)
(i.e., θ ∈ �ξ), it is certifiably robust according to Theorem 1.
A point ξ that satisfies the empirical version θ ∈ �̂ξ (which
leads to zero loss incorporated in (8)) is also certifiably robust.
Theorem 2 establishes a lower bound of the robustness of the
solution obtained from (8) using RP, and this lower bound
holds according to the constraints from (7).

Remark 7: The theoretical bound in (9) differs from common
generalization bounds in learning theory in that the bound
is evaluated a-posteriori after the solution is computed. This
“wait-and-judge” type of result has been developed in convex
optimization [3]. However, existing methods primarily apply
to feasibility problems [3], assuming the existence of a NODE
parameter θ ∈ � such that θ ∈ �ξ for all ξ ∈ Dn. This is

1As an example of such function, we can construct a set S such that
ξi ∈ S if and only if ξi ∈ Dn and θn 
∈ �ξi . We collect the original indices
of all points in S as S as the output of In(Dn). The validity of this function
is implied by Assumption 2. However, note that the existence of such a
function does not rely on Assumption 2.
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TABLE I
ROBUSTNESS AGAINST GAUSSIAN NOISE (ZERO MEAN

AND DIFFERENT VARIANCES σ2). THE AVERAGE AND
STANDARD DEVIATION ARE ACROSS 10 RANDOM

PERTURBATIONS FOR EACH DATA

TABLE II
ROBUSTNESS AGAINST PGD ATTACK ON MNIST

unrealistic because we cannot expect a NODE that is robust for
all data. Our method is broadly applicable to the relaxed setting
and can be compared to the extension of standard PAC learning
to agnostic PAC theory or the extension of example-consistent
frameworks to non-consistent schemes [5].

V. EXPERIMENTS

In this section, we demonstrate the effectiveness of our
framework for both non-adversarial and adversarial robustness.
For additional experimental details, including ODE architecture
and attack specifications, please refer to [20].

A. 2D Binary Classification

For each data shown in Fig. 1, 30 perturbed inputs are
uniformly sampled within a radius of 1.2 centered on the
original data point (red and blue dots along the circles).

Results: In Fig. 1, both methods correctly classify all orig-
inal points, but vanilla NODE’s output regions intersect the
decision boundary, indicating potential misclassifications under
perturbation, which is not observed for B-NODE. B-NODE
generally has smaller perturbed output regions, with their main
axis almost parallel to the decision boundary, indicating suc-
cessful transformation of anisotropic perturbations on inputs
into isotropic perturbations on outputs, where most perturba-
tions are innocuous (i.e., do not change decisions). In contrast,
vanilla NODE is more susceptible to output perturbations across
decision boundaries (in some cases, even running the integral
longer can lead to wrong decisions).

B. Evaluating Robustness on MNIST

First, we test the improvement of robustness against Gaussian
noise (Table I). While vanilla NODE is robust under mild per-
turbations, the performance drops significantly as the variance
of Gaussian noise increases.

Robustness against PGD attack [17] is shown in Table II.
We compare our method to the vanilla NODE trained with
clean data [6], NODE trained with data augmentation (AT-
NODE), TisODE [12], and ODE-TRADES [23], using the same
architecture for both methods to ensure a fair comparison. As
the attack radius increases (�∞-norm bounds shown in the
first row of each table), the performance deteriorates for all

TABLE III
ROBUSTNESS AGAINST AUTOPGD ATTACK ON MNIST

TABLE IV
ROBUSTNESS AGAINST SQUARE ATTACK ON MNIST

TABLE V
PERFORMANCE ON FASHIONMNIST

methods. However, the drop in performance for B-NODE is
much less, indicating enhanced robustness.

We confirmed the tightness of the bound in Theorem 2 by
calculating the theoretical lower bound for robust accuracy with
99% confidence. For 2000 training data, we obtained lower
bounds ranging from 60.70% to 53.44% (in percentage) as PGD
magnitudes increased from 0.01 to 0.05 (see [20] for details).
Although there remains a discrepancy between the theoretical
lower bound and the actual test error (as shown in the last row
of Table II), such numbers are nontrivial considering the size
and nonlinearity of the learning system.

According to [13], evaluating against PGD is not sufficient to
empirically demonstrate the adversarial robustness of NODEs
because NODEs can obfuscate gradients. Therefore, additional
experiments against AutoPGD [7] and Square Attack [2] are
performed to demonstrate effectiveness of defense, as shown
in Table III and IV.

C. Evaluation on FashionMNIST and CIFAR10

For the FashionMNIST data, we tested with convolution
Neural ODEs, which uses a 2D matrix to represent hidden states
during forward propagation. AT-NODE, ODE-TRADES and
B-NODE are trained with clean data augmented with adversarial
examples, which are generated by 40 steps L∞ norm PGD
attack, whose magnitude ε is 8/255. The clean data accuracy
for vanilla NODE, AT-NODE, B-NODE and ODE-TRADES
are 85.36%, 82.10%, 82.68% and 83.24%, respectively.

For the CIFAR10 experiment, we use a pre-trained CNN
model for feature extractor, the output of which is provided
to NODE as an initial state [15]. The clean data accuracy for
vanilla NODE, B-NODE, ODE-TRADES are 89.68%, 89.16%,
and 90.48%, respectively.

The results in Table V and VI indicate that B-NODE exhibits
the best performance among all methods. Nevertheless, we
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TABLE VI
PERFORMANCE ON CIFAR10

TABLE VII
ABLATION ANALYSIS FOR MODELS WITH AND WITHOUT BARRIER
FUNCTION LOSS OR DATA AUGMENTATION ON MNIST DATASET

observed a significant decrease in performance compared to
the accuracy on clean data, suggesting that there is room for
improvement in future work.

D. Ablation Analysis

We conducted an experiment to analyze the impact of
learning-based barrier functions and data augmentation on
the robustness of four different models (see details in
[20, Appendix]). As shown in Table VII, barrier function
without data augmentation can already improve robustness,
sometimes by 15% (in the case of PGD-0.05). It is remarkable
to see improvement in all cases of attacks, indicating some
level of “universal robustness.” However, the use of the barrier
function in conjunction with data augmentation yields the most
robust performance.

VI. CONCLUSION

We have developed an algorithm to train NODEs based on
barrier functions with certified robustness. Future directions
include examining the necessity of the robustness certificates
and exploring the incorporation of (exponential) control barrier
functions to problems beyond classifications.

ACKNOWLEDGMENT

This work was authored in part by the National Renewable
Energy Laboratory, operated by Alliance for Sustainable
Energy, LLC, for DOE under Contract No. DE-AC36-
08GO28308. Funding provided by the U.S. Department of
Energy Office of Electricity Advanced Grid Modeling (AGM)
program. The views expressed in the article do not necessarily
represent the views of the DOE or the U.S. Government. The
U.S. Government retains and the publisher, by accepting the
article for publication, acknowledges that the U.S. Government
retains a nonexclusive, paid-up, irrevocable, worldwide license
to publish or reproduce the published form of this work, or
allow others to do so, for U.S. Government purposes.

REFERENCES

[1] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in Proc. 18th Eur. Control Conf. (ECC), 2019, pp. 3420–3431.

[2] M. Andriushchenko, F. Croce, N. Flammarion, and M. Hein, “Square
attack: A query-efficient black-box adversarial attack via random search,”
in Proc. ECCV, 2020, pp. 484–501.

[3] M. C. Campi and S. Garatti, “Wait-and-judge scenario optimization,”
Math. Program., vol. 167, no. 1, pp. 155–189, 2018.

[4] M. C. Campi, S. Garatti, and F. A. Ramponi, “A general scenario
theory for nonconvex optimization and decision making,” IEEE Trans.
Autom. Control, vol. 63, no. 12, pp. 4067–4078, Dec. 2018.

[5] M. C. Campi and S. Garatti, “Compression, generalization and learning,”
2023, arXiv:2301.12767.

[6] R. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural
ordinary differential equations,” in Proc. NeurIPS, vol. 31, 2018,
pp. 6572–6583.

[7] F. Croce and M. Hein, “Reliable evaluation of adversarial robustness
with an ensemble of diverse parameter-free attacks,” in Proc. ICML,
2020, pp. 2206–2216.

[8] C. Dawson, S. Gao, and C. Fan, “Safe control with learned certificates:
A survey of neural Lyapunov, barrier, and contraction methods,” 2022,
arXiv:2202.11762.

[9] A. Ghosh, H. S. Behl, E. Dupont, P. H. S. Torr, and V. Namboodiri,
“STEER: Simple temporal regularization for neural ODE,” in Proc.
NeurIPS, vol. 33, 2020, pp. 14831–14843.

[10] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in Proc. ICLR, 2015, pp. 1–11.

[11] S. Grunbacher, R. Hasani, M. Lechner, J. Cyranka, S. A. Smolka,
and R. Grosu, “On the verification of neural ODEs with stochas-
tic guarantees,” in Proc. AAAI Conf. Artif. Intell., vol. 35, 2021,
pp. 11525–11535.

[12] H. Yan, J. Du, V. Y. Tan, and J. Feng, “On robustness of neural
ordinary differential equations,” in Proc. Int. Conf. Learn. Represent.,
2020, pp. 1–15.

[13] Y. Huang, Y. Yu, H. Zhang, Y. Ma, and Y. Yao, “Adversarial robustness
of stabilized neural ODE might be from obfuscated gradients,” in Proc.
Int. Conf. Math. Sci. Mach. Learn., 2022, pp. 497–515.

[14] Y. Huang, I. D. J. Rodriguez, H. Zhang, Y. Shi, and Y. Yue, “FI-
ODE: Certified and robust forward invariance in neural ODEs,” 2022,
arXiv:2210.16940.

[15] Q. Kang, Y. Song, Q. Ding, and W. P. Tay, “Stable neural ODE with
Lyapunov-stable equilibrium points for defending against adversarial
attacks,” in Proc. NeurIPS, vol. 34, 2021, pp. 14925–14937.

[16] X. Liu, T. Xiao, S. Si, Q. Cao, S. Kumar, and C.-J. Hsieh, “How does
noise help robustness? explanation and exploration under the neural SDE
framework,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2020, pp. 282–290.

[17] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in Proc. ICLR,
2018, pp. 1–23.

[18] I. Rodriguez, A. Ames, and Y. Yue, “LyaNet: A Lyapunov framework
for training neural ODEs,” in Proc. Int. Conf. Mach. Learn., 2022,
pp. 18687–18703.

[19] V. Tjeng, K. Y. Xiao, and R. Tedrake, “Evaluating robustness of neural
networks with mixed integer programming,” in Proc. Int. Conf. Learn.
Represent., 2018, pp. 1–21.

[20] R. Yang, R. Jia, X. Zhang, and M. Jin. “Certifiably robust neural ODE
with learning-based barrier function.” 2023. [Online]. Available: http://
www.jinming.tech/papers/B-NODE23full.pdf

[21] M. Zakwan, L. Xu, and G. Ferrari-Trecate, “Robust classification using
contractive Hamiltonian neural ODEs,” 2022, arXiv:2203.11805.

[22] Y. Zeng et al., “Towards robustness certification against universal
perturbations,” in Proc. 11th Int. Conf. Learn. Represent., 2023, pp. 1–18.

[23] H. Zhang, Y. Yu, J. Jiao, E. Xing, L. El Ghaoui, and M. Jordan,
“Theoretically principled trade-off between robustness and accuracy,”
in Proc. Int. Conf. Mach. Learn., 2019, pp. 7472–7482.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on December 20,2023 at 21:34:03 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


